Peran Gen EPSPS dalam Ketahanan Tanaman Terhadap Herbisida: Prospek Dan Tantangan Kedepannya
Kata Kunci:
ESPS, glifosat, tanaman transgenik, resistensi herbisida, bioteknologi pertanianAbstrak
Ketahanan tanaman terhadap herbisida glifosat telah menjadi perhatian utama dalam dunia pertanian modern. Gen 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) berperan penting dalam jalur shikimat yang terlibat dalam sintesis asam amino esensial pada tanaman. Glifosat bekerja dengan menghambat enzim EPSPS, yang menyebabkan gangguan metabolisme tanaman dan akhirnya kematian. Namun, tanaman transgenik yang membawa varian gen EPSPS yang resisten terhadap glifosat telah berhasil dikembangkan, memungkinkan petani mengendalikan gulma dengan lebih efektif tanpa merusak tanaman budidaya. Penelitian ini bertujuan untuk meninjau peran gen EPSPS dalam ketahanan tanaman yang telah disisipi gen EPSPS terhadap herbisida glifosat mekanisme resistensi yang dihasilkan, serta tantangan dan prospek penggunaannya di masa depan. Metode yang digunakan dalam kajian ini adalah tinjauan pustaka dari berbagai jurnal ilmiah dan sumber terpercaya terkait mekanisme kerja gen EPSPS, strategi transformasi tanaman, serta dampaknya terhadap ekosistem pertanian. Hasil penelitian menunjukkan bahwa tanaman yang telah dimodifikasi dengan gen EPSPS resisten terhadap glifosat mampu meningkatkan efisiensi pengelolaan gulma dan produktivitas pertanian. Namun, penggunaan yang intensif dapat memicu evolusi resistensi pada gulma, berpotensi menyebabkan dampak lingkungan, dan menghadapi tantangan regulasi serta penerimaan masyarakat. Oleh karena itu, strategi pengelolaan yang tepat, termasuk rotasi herbisida dan pendekatan bioteknologi alternatif seperti CRISPR/Cas9, perlu dikembangkan untuk memastikan efektivitas jangka panjang dari teknologi ini.
Unduhan
Referensi
Aditiya, D. R. (2021). Herbisida : Risiko terhadap Lingkungan dan Efek Menguntungkan. Sainteknol, 19(1). https://journal.unnes.ac.id/nju/index.php/sainteknol
Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(3), 1–15. https://doi.org/10.1186/s12302-016-0070-0
Cerdeira, A. L., & Duke, S. O. (2006). The Current Status and Environmental Impacts of Glyphosate‐Resistant Crops. Journal of Environmental Quality, 35(5), 1633–1658. https://doi.org/10.2134/jeq2005.0378
Chhapekar, S., Raghavendrarao, S., Pavan, G., Ramakrishna, C., Singh, V. K., Phanindra, M. L. V., Dhandapani, G., Sreevathsa, R., & Ananda Kumar, P. (2015). Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate. Plant Cell Reports, 34(5), 721–731. https://doi.org/10.1007/s00299-014-1732-2
Fang, J., Nan, P., Gu, Z., Ge, X., Feng, Y. Q., & Lu, B. R. (2018). Overexpressing exogenous 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes increases fecundity and auxin content of transgenic arabidopsis plants. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00233
Franci, J., Lam, K. W., Chuah, T. S., & Cha, T. S. (2020). Genetic diversity and in silico evidence of target-site mutation in the EPSPS gene in endowing glyphosate resistance in Eleusine indica (L.) from Malaysia. Pesticide Biochemistry and Physiology, 165. https://doi.org/10.1016/j.pestbp.2020.104556
Gaines, T. A., Duke, S. O., Morran, S., Rigon, C. A. G., Tranel, P. J., Küpper, A., & Dayan, F. E. (2020). Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 295(30), 10307–10330. https://doi.org/10.1074/jbc.REV120.013572
Ghanizadeh, H., Griffiths, A. G., Buddenhagen, C. E., Anderson, C. B., & Harrington, K. C. (2021). A PCR plus restriction enzyme-based technique for detecting target-enzyme mutations at position Pro-106 in glyphosate-resistant Lolium perenne. PLoS ONE, 16(2 February). https://doi.org/10.1371/journal.pone.0246028
Guo, W. fang, Wang, K. Y., Wang, N., Li, J., Li, G. qiang, & Liu, D. hu. (2018). Rapid and convenient transformation of cotton (Gossypium hirsutum L.) using in planta shoot apex via glyphosate selection. Journal of Integrative Agriculture, 17(10), 2196–2203. https://doi.org/10.1016/S2095-3119(17)61865-3
Han, Y. J., & Kim, J. Il. (2019). Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnology Reports, 13(5), 447–457. https://doi.org/10.1007/s11816-019-00575-8
Karthik, K., Nandiganti, M., Thangaraj, A., Singh, S., Mishra, P., Rathinam, M., Sharma, M., Singh, N. K., Dash, P. K., & Sreevathsa, R. (2020). Transgenic Cotton (Gossypium hirsutum L.) to Combat Weed Vagaries: Utility of an Apical Meristem-Targeted in planta Transformation Strategy to Introgress a Modified CP4-EPSPS Gene for Glyphosate Tolerance. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00768
Lacroix, R., & Kurrasch, D. M. (2023). Glyphosate toxicity: In vivo, in vitro, and epidemiological evidence. In Toxicological Sciences (Vol. 192, Issue 2, pp. 131–140). Oxford University Press. https://doi.org/10.1093/toxsci/kfad018
Leino, L., Tall, T., Helander, M., Saloniemi, I., Saikkonen, K., Ruuskanen, S., & Puigbò, P. (2021). Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. Journal of Hazardous Materials, 408. https://doi.org/10.1016/j.jhazmat.2020.124556
Liu, J., Nannas, N. J., Fu, F. F., Shi, J., Aspinwall, B., Parrott, W. A., & Dawe, R. K. (2019). Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell, 31(2), 368–383. https://doi.org/10.1105/tpc.18.00613
Lumbantoruan, J. E., Meiriani, & P.Putri, L. A. (2015). Pertumbuhan Dan Produksi Jagung Genotip PRG C7, Varietas C7 Dan DK 979 Dengan Metode Pengendalian Gulma Yang Berbeda. Jurnal Online Agroekoteaknologi, 3(2), 613–617. https://doi.org/10.32734/jaet.v3i2.10315
Luo, B., Zhang, X., Wang, F., Wang, Y., Wu, W., Lin, C., Rao, L., & Wang, Q. (2025). Development of a double-antibody sandwich ELISA for quantification of mutated EPSPS gene expression in rice. Analytical Biochemistry, 696. https://doi.org/https://doi.org/10.1016/j.ab.2024.115669.
Merritt, B. A., Zhang, X., Triplett, E. W., Mou, Z., & Orbović, V. (2021). Selection of transgenic citrus plants based on glyphosate tolerance conferred by a citrus 5-enolpyruvylshikimate-3-phosphate synthase variant. Plant Cell Reports, 40(10), 1947–1956. https://doi.org/10.1007/s00299-021-02760-y
Nilma, Haris, A., Galib, M., Surianty, & Suhaerah. (2019). IDENTIFIKASI GULMA DI LAHAN PERTANIAN JAGUNG (Zea mays L.) PADA FASE VEGETATIF DAN GENERATIF DI KABUPATEN MAROS DAN GOWA. 59–66.
Nurwana, Lumowa, S. V., Herliani, & Purwati, S. (2024). Pengaruh Kombinasi Pestisida Nabati Terhadap Intensitas Serangan Serangga Hama Pada Tanaman Tomat (Solanum lycopersicum L.). SYMBIOTIC: Journal of Biological Education and Science, 5(2), 188–196.
Ouyang, C., Liu, W., Chen, S., Zhao, H., Chen, X., Jin, X., Li, X., Wu, Y., Zeng, X., Huang, P., He, X., & An, B. (2021). The Naturally Evolved EPSPS From Goosegrass Confers High Glyphosate Resistance to Rice. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.756116
Paes de Melo, B., Lourenço-Tessutti, I. T., Morgante, C. V., Santos, N. C., Pinheiro, L. B., de Jesus Lins, C. B., Silva, M. C. M., Macedo, L. L. P., Fontes, E. P. B., & Grossi-de-Sa, M. F. (2020a). Soybean Embryonic Axis Transformation: Combining Biolistic and Agrobacterium-Mediated Protocols to Overcome Typical Complications of In Vitro Plant Regeneration. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01228
Paes de Melo, B., Lourenço-Tessutti, I. T., Morgante, C. V., Santos, N. C., Pinheiro, L. B., de Jesus Lins, C. B., Silva, M. C. M., Macedo, L. L. P., Fontes, E. P. B., & Grossi-de-Sa, M. F. (2020b). Soybean Embryonic Axis Transformation: Combining Biolistic and Agrobacterium-Mediated Protocols to Overcome Typical Complications of In Vitro Plant Regeneration. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01228
Pan, L., Yu, Q., Han, H., Mao, L., Nyporko, A., Fan, L. J., Bai, L., & Powles, S. (2019). Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiology, 181(4), 1519–1534. https://doi.org/10.1104/pp.19.00979
Patterson, E. L., Pettinga, D. J., Ravet, K., Neve, P., Gaines, T. A., & Pettinga, D. J. (2017). Glyphosate resistance and EPSPS gene duplication: Convergent evolution in multiple plant species. Journal of Heredity, 109(2), 117–125.
Pratiwi, R. A., & Surya, M. I. (2020). Agrobacterium-Mediated Transformation. In K.-Y. To (Ed.), Genetic Transformation in Crops (pp. 1–14). IntechOpen. https://doi.org/http://dx.doi.org/10.5772/intechopen.91132
Putra, S. F., Fadilah, M., & Fitri, R. (2023). Kemampuan Daya Hambat Hand Sanitizer Eco-enzyme terhadap Pertumbuhan Bakteri E-Coli. SYMBIOTIC: Journal of Biological Education and Science, 4(1), 1–9.
Ramadhanu, R., Purba, E., & Ginting, J. (2018). Skrining Populasi Eleusine Indica Resisten Glifosat Berasal Dari Lahan Jagung di Provinsi Jawa Timur dan Jawa Tengah Screening Population of Eleusine Indica Resistant Glyphosate was From Maize Land Province in East Java and Central Java. Jurnal Pertanian Tropik, 5(2), 257–267.
Ridwan, M., AM, S., Ulum, B., & Muhammad, F. (2021). Pentingnya Penerapan Literature Review pada Penelitian Ilmiah. Jurnal Masohi, 02(01), 42–51. http://journal.fdi.or.id/index.php/jmas/article/view/356
Rizky Aditiya, D. (2021). Herbisida : Risiko terhadap Lingkungan dan Efek Menguntungkan. Sainteknol, 19(1), 6–10. https://journal.unnes.ac.id/nju/index.php/sainteknol
Rizqoni, Moh. I. A., Arum, A. Y., & Su’udi, M. (2024). Produktivitas dan keunggulan beberapa tanaman produk rekayasa genetika di Indonesia. Jurnal Penelitian Sains, 26(3), 354–359. https://doi.org/10.56064/jps.v26i3.1031
Safitri, M., Irawati, A., & Pasaribu, A. (2021). PENGARUH BERBAGAI HERBISIDA UNTUK MENGENDALIKAN RUMPUT BELULANG (Eleusine indica L.) YANG RESISTEN TERHADAP HERBISIDA GLIFOSAT. Agrohita Jurnal Agroteknologi, 6(1), 89–99. https://doi.org/10.31604/jap.v6i1.3867
Sánchez-Bayo, F. (2021). Indirect effect of pesticides on insects and other arthropods. In Toxics (Vol. 9, Issue 8). MDPI. https://doi.org/10.3390/toxics9080177
Sauer, N. J., Narváez-Vásquez, J., Mozoruk, J., Miller, R. B., Warburg, Z. J., Woodward, M. J., Mihiret, Y. A., Lincoln, T. A., Segami, R. E., Sanders, S. L., Walker, K. A., Beetham, P. R., Schöpke, C. R., & Gocal, G. F. W. (2016). Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology, 170(4), 1917–1928. https://doi.org/10.1104/pp.15.01696
Tampubolon, K., & Purba, E. (2018). SCREENING SINGLE RESISTANCE OF Eleusine indica ON OIL PALM PLANTATION IN PADANG LAWAS AND TAPANULI SELATAN REGENCY INDONESIA. Jurnal Natural, 18(2), 101–106. https://doi.org/10.24815/jn.v18i2.11223
Tarafdar, A., Vishwakarma, H., Gothandapani, S., Bhati, M., Biswas, K., Prakash, A., Chaturvedi, U., Solanke, A. U., & Padaria, J. C. (2019). A quick, easy and cost-effective in planta method to develop direct transformants in wheat. 3 Biotech, 9(5). https://doi.org/10.1007/s13205-019-1708-6
Vats, S. (2015). Herbicides: History, Classification and Genetic Manipulation of Plants for Herbicide Resistance. In Sustainable Agriculture Reviews (Vol. 15, pp. 153–192). Springer, Cham. https://doi.org/10.1007/978-3-319-09132-7_3
Vemanna, R. S., Vennapusa, A. R., Easwaran, M., Chandrashekar, B. K., Rao, H., Ghanti, K., Sudhakar, C., Mysore, K. S., & Makarla, U. (2017). Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants. Plant Biotechnology Journal, 15(7), 794–804. https://doi.org/10.1111/pbi.12632
Widhayasa, B. (2023). Alelopati Gulma: Pelepasan Alelokimia dan Kerugiannya terhadap Tanaman Budidaya. Jurnal Agrosainta, 7(1), 13–22. https://doi.org/10.51589/ags.v7i1.3403
Yang, Q., Zhang, Y., Xu, H., Han, D., Tan, J., Liu, R., Fang, B., He, J., Xu, W., & Zhang, W. (2024). Single primer isothermal amplification for real-time and visual on-site detection of genetically modified crops by recognizing CP4-EPSPS gene. Journal of Food Composition and Analysis, 126. https://doi.org/https://doi.org/10.1016/j.jfca.2023.105937
Yang, S. H., Euyeon, K., Park, H., & Koo, Y. (2022). Selection of the high efficient sgRNA for CRISPR-Cas9 to edit herbicide related genes, PDS, ALS, and EPSPS in tomato. Applied Biological Chemistry, 65(13), 1–10. https://doi.org/10.1186/s13765-022-00679-w
Yi, S., Wu, G., Lin, Y., Hu, N., & Liu, Z. (2015). Characterization of a new type of glyphosate-tolerant 5-enolpyruvyl shikimate-3-phosphate synthase from Isoptericola variabilis-ScienceDirect. Journal of Molecular Catalysis B: Enzymatic, 111, 1–8. https://doi.org/https://doi.org/10.1016/j.molcatb.2014.11.009
Zapiola, M. L., & Mallory-Smith, C. A. (2017). Pollen-mediated gene flow from transgenic perennial creeping bentgrass and hybridization at the landscape level. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0173308
Zen, W. I., & Jasril, I. R. (2024). Pengembangan Sistem Penyiangan Gulma Padi Berbasis IoT Menggunakan ESP32 untuk Meningkatkan Produktivitas Pertanian. ELEKTIF: Jurnal Elektronika & Informatika, 2(2), 75–84. https://doi.org/10.24036/elektif.v2i2.51
Zeng, H., Zhang, M., Liu, H., Liu, J., Zhu, L., Feng, D., & Wang, J. (2023). Two electrochemiluminescence immunosensors for the sensitive and quantitative detection of the CP4-EPSPS protein in genetically modified crops. Food Chemistry, 428. https://doi.org/10.1016/j.foodchem.2023.136818
2.png)




