Peran Gen EPSPS dalam Ketahanan Tanaman Terhadap Herbisida: Prospek Dan Tantangan Kedepannya
Keywords:
EPSPS, glyphosate, transgenic crops, herbicide resistance, agricultural biotechnology.Abstract
Plant resistance to glyphosate herbicides has become a critical issue in modern agriculture. The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene is a key component of the shikimate pathway responsible for synthesizing essential aromatic amino acids in plants. Glyphosate inhibits the EPSPS enzyme, disrupting plant metabolism and leading to death. However, transgenic crops containing glyphosate-resistant EPSPS variants have been successfully developed, enabling effective weed control without harming cultivated plants. This study aims to review the role of the EPSPS gene in conferring glyphosate resistance, the underlying molecular mechanisms, and future prospects and challenges in its application. The method used is a literature review of scientific publications and credible sources concerning EPSPS function, plant transformation strategies, and their ecological impacts. The results indicate that the introduction of glyphosate-resistant EPSPS genes enhances weed management efficiency and agricultural productivity. Nonetheless, continuous and intensive use may accelerate the evolution of resistant weed populations, pose potential ecological risks, and raise issues of regulation and public acceptance. Therefore, sustainable management strategies, such as herbicide rotation and biotechnological innovations including CRISPR/Cas9-based editing, are necessary to ensure the long-term effectiveness and environmental safety of glyphosate-resistant crop technology.
Downloads
References
Aditiya, D. R. (2021). Herbisida : Risiko terhadap Lingkungan dan Efek Menguntungkan. Sainteknol, 19(1). https://journal.unnes.ac.id/nju/index.php/sainteknol
Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(3), 1–15. https://doi.org/10.1186/s12302-016-0070-0
Cerdeira, A. L., & Duke, S. O. (2006). The Current Status and Environmental Impacts of Glyphosate‐Resistant Crops. Journal of Environmental Quality, 35(5), 1633–1658. https://doi.org/10.2134/jeq2005.0378
Chhapekar, S., Raghavendrarao, S., Pavan, G., Ramakrishna, C., Singh, V. K., Phanindra, M. L. V., Dhandapani, G., Sreevathsa, R., & Ananda Kumar, P. (2015). Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate. Plant Cell Reports, 34(5), 721–731. https://doi.org/10.1007/s00299-014-1732-2
Fang, J., Nan, P., Gu, Z., Ge, X., Feng, Y. Q., & Lu, B. R. (2018). Overexpressing exogenous 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes increases fecundity and auxin content of transgenic arabidopsis plants. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00233
Franci, J., Lam, K. W., Chuah, T. S., & Cha, T. S. (2020). Genetic diversity and in silico evidence of target-site mutation in the EPSPS gene in endowing glyphosate resistance in Eleusine indica (L.) from Malaysia. Pesticide Biochemistry and Physiology, 165. https://doi.org/10.1016/j.pestbp.2020.104556
Gaines, T. A., Duke, S. O., Morran, S., Rigon, C. A. G., Tranel, P. J., Küpper, A., & Dayan, F. E. (2020). Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 295(30), 10307–10330. https://doi.org/10.1074/jbc.REV120.013572
Ghanizadeh, H., Griffiths, A. G., Buddenhagen, C. E., Anderson, C. B., & Harrington, K. C. (2021). A PCR plus restriction enzyme-based technique for detecting target-enzyme mutations at position Pro-106 in glyphosate-resistant Lolium perenne. PLoS ONE, 16(2 February). https://doi.org/10.1371/journal.pone.0246028
Guo, W. fang, Wang, K. Y., Wang, N., Li, J., Li, G. qiang, & Liu, D. hu. (2018). Rapid and convenient transformation of cotton (Gossypium hirsutum L.) using in planta shoot apex via glyphosate selection. Journal of Integrative Agriculture, 17(10), 2196–2203. https://doi.org/10.1016/S2095-3119(17)61865-3
Han, Y. J., & Kim, J. Il. (2019). Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnology Reports, 13(5), 447–457. https://doi.org/10.1007/s11816-019-00575-8
Karthik, K., Nandiganti, M., Thangaraj, A., Singh, S., Mishra, P., Rathinam, M., Sharma, M., Singh, N. K., Dash, P. K., & Sreevathsa, R. (2020). Transgenic Cotton (Gossypium hirsutum L.) to Combat Weed Vagaries: Utility of an Apical Meristem-Targeted in planta Transformation Strategy to Introgress a Modified CP4-EPSPS Gene for Glyphosate Tolerance. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00768
Lacroix, R., & Kurrasch, D. M. (2023). Glyphosate toxicity: In vivo, in vitro, and epidemiological evidence. In Toxicological Sciences (Vol. 192, Issue 2, pp. 131–140). Oxford University Press. https://doi.org/10.1093/toxsci/kfad018
Leino, L., Tall, T., Helander, M., Saloniemi, I., Saikkonen, K., Ruuskanen, S., & Puigbò, P. (2021). Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. Journal of Hazardous Materials, 408. https://doi.org/10.1016/j.jhazmat.2020.124556
Liu, J., Nannas, N. J., Fu, F. F., Shi, J., Aspinwall, B., Parrott, W. A., & Dawe, R. K. (2019). Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell, 31(2), 368–383. https://doi.org/10.1105/tpc.18.00613
Lumbantoruan, J. E., Meiriani, & P.Putri, L. A. (2015). Pertumbuhan Dan Produksi Jagung Genotip PRG C7, Varietas C7 Dan DK 979 Dengan Metode Pengendalian Gulma Yang Berbeda. Jurnal Online Agroekoteaknologi, 3(2), 613–617. https://doi.org/10.32734/jaet.v3i2.10315
Luo, B., Zhang, X., Wang, F., Wang, Y., Wu, W., Lin, C., Rao, L., & Wang, Q. (2025). Development of a double-antibody sandwich ELISA for quantification of mutated EPSPS gene expression in rice. Analytical Biochemistry, 696. https://doi.org/https://doi.org/10.1016/j.ab.2024.115669.
Merritt, B. A., Zhang, X., Triplett, E. W., Mou, Z., & Orbović, V. (2021). Selection of transgenic citrus plants based on glyphosate tolerance conferred by a citrus 5-enolpyruvylshikimate-3-phosphate synthase variant. Plant Cell Reports, 40(10), 1947–1956. https://doi.org/10.1007/s00299-021-02760-y
Nilma, Haris, A., Galib, M., Surianty, & Suhaerah. (2019). IDENTIFIKASI GULMA DI LAHAN PERTANIAN JAGUNG (Zea mays L.) PADA FASE VEGETATIF DAN GENERATIF DI KABUPATEN MAROS DAN GOWA. 59–66.
Nurwana, Lumowa, S. V., Herliani, & Purwati, S. (2024). Pengaruh Kombinasi Pestisida Nabati Terhadap Intensitas Serangan Serangga Hama Pada Tanaman Tomat (Solanum lycopersicum L.). SYMBIOTIC: Journal of Biological Education and Science, 5(2), 188–196.
Ouyang, C., Liu, W., Chen, S., Zhao, H., Chen, X., Jin, X., Li, X., Wu, Y., Zeng, X., Huang, P., He, X., & An, B. (2021). The Naturally Evolved EPSPS From Goosegrass Confers High Glyphosate Resistance to Rice. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.756116
Paes de Melo, B., Lourenço-Tessutti, I. T., Morgante, C. V., Santos, N. C., Pinheiro, L. B., de Jesus Lins, C. B., Silva, M. C. M., Macedo, L. L. P., Fontes, E. P. B., & Grossi-de-Sa, M. F. (2020a). Soybean Embryonic Axis Transformation: Combining Biolistic and Agrobacterium-Mediated Protocols to Overcome Typical Complications of In Vitro Plant Regeneration. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01228
Paes de Melo, B., Lourenço-Tessutti, I. T., Morgante, C. V., Santos, N. C., Pinheiro, L. B., de Jesus Lins, C. B., Silva, M. C. M., Macedo, L. L. P., Fontes, E. P. B., & Grossi-de-Sa, M. F. (2020b). Soybean Embryonic Axis Transformation: Combining Biolistic and Agrobacterium-Mediated Protocols to Overcome Typical Complications of In Vitro Plant Regeneration. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01228
Pan, L., Yu, Q., Han, H., Mao, L., Nyporko, A., Fan, L. J., Bai, L., & Powles, S. (2019). Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiology, 181(4), 1519–1534. https://doi.org/10.1104/pp.19.00979
Patterson, E. L., Pettinga, D. J., Ravet, K., Neve, P., Gaines, T. A., & Pettinga, D. J. (2017). Glyphosate resistance and EPSPS gene duplication: Convergent evolution in multiple plant species. Journal of Heredity, 109(2), 117–125.
Pratiwi, R. A., & Surya, M. I. (2020). Agrobacterium-Mediated Transformation. In K.-Y. To (Ed.), Genetic Transformation in Crops (pp. 1–14). IntechOpen. https://doi.org/http://dx.doi.org/10.5772/intechopen.91132
Putra, S. F., Fadilah, M., & Fitri, R. (2023). Kemampuan Daya Hambat Hand Sanitizer Eco-enzyme terhadap Pertumbuhan Bakteri E-Coli. SYMBIOTIC: Journal of Biological Education and Science, 4(1), 1–9.
Ramadhanu, R., Purba, E., & Ginting, J. (2018). Skrining Populasi Eleusine Indica Resisten Glifosat Berasal Dari Lahan Jagung di Provinsi Jawa Timur dan Jawa Tengah Screening Population of Eleusine Indica Resistant Glyphosate was From Maize Land Province in East Java and Central Java. Jurnal Pertanian Tropik, 5(2), 257–267.
Ridwan, M., AM, S., Ulum, B., & Muhammad, F. (2021). Pentingnya Penerapan Literature Review pada Penelitian Ilmiah. Jurnal Masohi, 02(01), 42–51. http://journal.fdi.or.id/index.php/jmas/article/view/356
Rizky Aditiya, D. (2021). Herbisida : Risiko terhadap Lingkungan dan Efek Menguntungkan. Sainteknol, 19(1), 6–10. https://journal.unnes.ac.id/nju/index.php/sainteknol
Rizqoni, Moh. I. A., Arum, A. Y., & Su’udi, M. (2024). Produktivitas dan keunggulan beberapa tanaman produk rekayasa genetika di Indonesia. Jurnal Penelitian Sains, 26(3), 354–359. https://doi.org/10.56064/jps.v26i3.1031
Safitri, M., Irawati, A., & Pasaribu, A. (2021). PENGARUH BERBAGAI HERBISIDA UNTUK MENGENDALIKAN RUMPUT BELULANG (Eleusine indica L.) YANG RESISTEN TERHADAP HERBISIDA GLIFOSAT. Agrohita Jurnal Agroteknologi, 6(1), 89–99. https://doi.org/10.31604/jap.v6i1.3867
Sánchez-Bayo, F. (2021). Indirect effect of pesticides on insects and other arthropods. In Toxics (Vol. 9, Issue 8). MDPI. https://doi.org/10.3390/toxics9080177
Sauer, N. J., Narváez-Vásquez, J., Mozoruk, J., Miller, R. B., Warburg, Z. J., Woodward, M. J., Mihiret, Y. A., Lincoln, T. A., Segami, R. E., Sanders, S. L., Walker, K. A., Beetham, P. R., Schöpke, C. R., & Gocal, G. F. W. (2016). Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology, 170(4), 1917–1928. https://doi.org/10.1104/pp.15.01696
Tampubolon, K., & Purba, E. (2018). SCREENING SINGLE RESISTANCE OF Eleusine indica ON OIL PALM PLANTATION IN PADANG LAWAS AND TAPANULI SELATAN REGENCY INDONESIA. Jurnal Natural, 18(2), 101–106. https://doi.org/10.24815/jn.v18i2.11223
Tarafdar, A., Vishwakarma, H., Gothandapani, S., Bhati, M., Biswas, K., Prakash, A., Chaturvedi, U., Solanke, A. U., & Padaria, J. C. (2019). A quick, easy and cost-effective in planta method to develop direct transformants in wheat. 3 Biotech, 9(5). https://doi.org/10.1007/s13205-019-1708-6
Vats, S. (2015). Herbicides: History, Classification and Genetic Manipulation of Plants for Herbicide Resistance. In Sustainable Agriculture Reviews (Vol. 15, pp. 153–192). Springer, Cham. https://doi.org/10.1007/978-3-319-09132-7_3
Vemanna, R. S., Vennapusa, A. R., Easwaran, M., Chandrashekar, B. K., Rao, H., Ghanti, K., Sudhakar, C., Mysore, K. S., & Makarla, U. (2017). Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants. Plant Biotechnology Journal, 15(7), 794–804. https://doi.org/10.1111/pbi.12632
Widhayasa, B. (2023). Alelopati Gulma: Pelepasan Alelokimia dan Kerugiannya terhadap Tanaman Budidaya. Jurnal Agrosainta, 7(1), 13–22. https://doi.org/10.51589/ags.v7i1.3403
Yang, Q., Zhang, Y., Xu, H., Han, D., Tan, J., Liu, R., Fang, B., He, J., Xu, W., & Zhang, W. (2024). Single primer isothermal amplification for real-time and visual on-site detection of genetically modified crops by recognizing CP4-EPSPS gene. Journal of Food Composition and Analysis, 126. https://doi.org/https://doi.org/10.1016/j.jfca.2023.105937
Yang, S. H., Euyeon, K., Park, H., & Koo, Y. (2022). Selection of the high efficient sgRNA for CRISPR-Cas9 to edit herbicide related genes, PDS, ALS, and EPSPS in tomato. Applied Biological Chemistry, 65(13), 1–10. https://doi.org/10.1186/s13765-022-00679-w
Yi, S., Wu, G., Lin, Y., Hu, N., & Liu, Z. (2015). Characterization of a new type of glyphosate-tolerant 5-enolpyruvyl shikimate-3-phosphate synthase from Isoptericola variabilis-ScienceDirect. Journal of Molecular Catalysis B: Enzymatic, 111, 1–8. https://doi.org/https://doi.org/10.1016/j.molcatb.2014.11.009
Zapiola, M. L., & Mallory-Smith, C. A. (2017). Pollen-mediated gene flow from transgenic perennial creeping bentgrass and hybridization at the landscape level. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0173308
Zen, W. I., & Jasril, I. R. (2024). Pengembangan Sistem Penyiangan Gulma Padi Berbasis IoT Menggunakan ESP32 untuk Meningkatkan Produktivitas Pertanian. ELEKTIF: Jurnal Elektronika & Informatika, 2(2), 75–84. https://doi.org/10.24036/elektif.v2i2.51
Zeng, H., Zhang, M., Liu, H., Liu, J., Zhu, L., Feng, D., & Wang, J. (2023). Two electrochemiluminescence immunosensors for the sensitive and quantitative detection of the CP4-EPSPS protein in genetically modified crops. Food Chemistry, 428. https://doi.org/10.1016/j.foodchem.2023.136818
2.png)




